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Abstract: This paper presents non-classical models for estimating and forecasting COVID-19 pandem-
ic indices. These models have been successfully tested on country data where the pandemic is nearing 
completion. In particular, an effective algorithm for mortality index evaluation is also presented. This 
index is usually replaced by more simple estimates such as, for instance, „the number of deaths divided 
by the number of infected”; however, while the virus is at the stage of its rapid distribution, such super-
ficial approaches are incorrect. Model indicators of the infection itself allow us to predict not only the 
apogee of the epidemic and the end of the quarantine period, but also the maximum number of infected 
people in some country (continent) during the height of the epidemic.

The second part of the paper is devoted to an attempt to build regression models to explain (with using 
100+ country socio-economic indicators taken from the World Bank data) the behavior of the epidemic 
spread indices. It is shown that the maximum number of infected people in the country is well predicted 
(R-square is close to 90%); and, moreover, migration indicators and the number of international air 
take-offs are effective regressors. Other indicators, for example, the mortality index, are difficultly 
modeled; nevertheless, it has a significant relationship with socio-economic factors.

The presented paper might be valuable for making effective decisions to forestall some future pandem-
ics or even the „second wave” of COVID-19.
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1. INTRODUCTION

Among classical epidemiological models, there are three main types of deterministic (paramet-
ric) models for infectious diseases that are spread by direct human-to-human contact in the 

population. They are presented in Herbert and Hethcote, 1989. The abbreviation „S. I. R” means 
the proportion of healthy S, the proportion of infected I and the proportion of recovered/deceased R 
who have immunity, S + I + R = 100%. These three types of models differ in that the first does not 
take into account the immunity of the SIS-type („healthy”-”infected”-”healthy”) S + I = 100%, the 
model SIR („healthy”-”infected”-”recovered”) is used for diseases where infection gives perma-
nent immunity; the third type of models takes into account natural birth/death in the population, 
and this type is focused on long-term modeling of epidemics. When a disease modeled by SIR 
passes through a population in a relatively short time (less than one year), this outbreak is called 
an epidemic. Since the epidemic occurs relatively quickly, the model does not include birth and 
death (life dynamics). Epidemics are common in diseases such as influenza, measles, rubella, 
and chicken pox. An overview, including non-parametric models, is given in Choisy et al., 2007.

Classical parametric models have serious drawbacks in order to model the COVID-19 global pan-
demic. One of the main issues is the lack of consideration in the model of active disciplinary actions 
to prevent the development of the epidemic. In the models, the parameters of mutual infection are 
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assumed to be constant, i.e. «the diseases are left to themselves». Due to obvious empirical obser-
vations boundary conditions on the simulation results are imposed; namely, at the beginning of the 
epidemic the number of infected as the number of infected (sick at a given time) increases exponen-
tially, starting from a certain conditional „zero” level, that can be chosen empirically, for example 
- 100 infected people. The number of infected (patients) at the end of the outbreak can be considered 
tending to zero or allow a small background level of the growth rate of the total number of infected. 
The overall level of the total number of infected people covers a small percentage of the population, 
S > I + R, so it does not make sense to incorporate a percentage with immunity in the model (i.e. 
SIR is not suitable). For the SIS model, the solution of the differential equation in finite functions 
might exist (the Bernoulli equation in the SIS model), but it has the property of exponential growth 
(at the beginning of development) only at such a parameter value that the level of infected people 
does not tend to zero after the peak of the disease. The next paragraph will present an alternative 
parametric infection model that is being successfully tested in the Ebola virus epidemic (Chapter 3).

During an outbreak of a new or emerging infectious agent such as COVID-19, one of the most 
important epidemiological quantities to be determined is the mortality rate (indicator), which 
is the percentage of cases that eventually die from this disease. This ratio is often estimated 
using the combined number of cases and deaths at one time, such as those compiled daily by the 
world health organization during the COVID-19 epidemic (WHO. Coronavirus disease, 2019). 
However, simple estimates of the fatality ratio obtained from these reports can be misleading 
if the result is unknown for the infected but not recovered proportion of patients at the time of 
analysis. Estimates obtained during the SARS epidemic by dividing the number of deaths by 
the total number of reported cases were much lower (3-5 percent during the first few weeks of 
the global outbreak) than estimates obtained using appropriate statistical methods, and varied 
significantly across countries. Moreover, as the epidemic progressed, these naive statistical esti-
mates falsely indicated an increase in the death rate, which fueled an already high level of public 
anxiety among the affected population. Therefore, this assessment requires modeling.

Ghani et al. (2005) propose a method for this, based on the Kaplan-Meyeri survival model, and 
evaluate its indicators using data from the 2003 severe acute respiratory syndrome epidemic in 
Hong Kong. In Chapter 4, we will propose an effective and simpler method for estimating the mor-
tality index, which uses the result of approximating the time series of the number of infected, recov-
ered, and deceased patients obtained from the model discussed in Chapter 2. The method defines 
two indices – the mortality index and the indicative period of recovery (conditional hospitalization).

2. THE INFECTION MODEL AND PEAK PARAMETERS

To explain the dynamics of the spread of a short-term epidemic, it is proposed to use the correct-
ed classical Lotka-Volterra model (L-V)2, which describes the interaction of two species, one of 
which is a predator, and the other is a victim (for example, the ecological system „carp-pike” or 
„hares-lynx”).

In the case of an epidemic, the victim is the number(percentage) of the population available for 
infection S(t), which at the time of t is equal to 1, S(Ť) = 1. It is assumed that the population takes 
measures to dissociate the „victim” by the simplest law

2 The model arose historically (1931) in connection with an attempt to explain the fluctuations of fish catch in 
the Adriatic Sea (Volterra, 1976). The same system of differential equations was proposed by Lotka a little 
earlier (1924), but Volterra much more fully analyzed this system.
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3. TESTING A PARAMETRIC MODEL OF INFECTION  
ON THE SPIKES OF THE EBOLA EPIDEMIC

The model (3) is tested on data on the dynamics of Ebola virus infection (WHO Situation Re-
ports. Number of Cases and Deaths in Guinea, Liberia, and Sierra Leone during the 2014-2016 
West Africa Ebola Outbreak). Testing is performed on each date T during the development of the 
epidemic, without using the values (known to date) after the dates. The result is shown in Figure 
1. Charts are arranged in a cascade for easy identification of changes in forecast parameters along 
the abscissa’s axis, which is identical for all charts. On the first (top), the current value of the fore-
cast for the peak date of infection for the model is calculated for the dynamic data. The dotted line 
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shows the final result (fact). The straight line marked with dots is the current time when the fore-
cast was made. On the second-the forecast value of the maximum number of infected Cmax in the 
aggregate of foci of infection (African countries). Below the graphs (thin lines and dots) are the 
infection dynamics: the model (as of the end date) and the fact. On the third (lower) – the number 
of infections per day: the model and the fact. This is calculated for the end date of the epidemic. 

Figure 1. Modeling of peak parameters for the epidemic of the Ebola virus.
Data source: WHO Situation Reports

It can be seen that the infection dynamics is approximated fairly accurately by the model (3). 
Forecasts of the peak values of the maximum infection rate begin to approach the exact values 
when the fluctuations in forecasts subside. The approach to the exact values of + / - 10 thousand 
people (up to 30%) begins with the period of approach of the epidemic period to the peak of 
infection. Before reaching the peak, forecast values are highly volatile and not significant.
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The first graph shows that the maximum begins to form when the forecast of the peak date in-
tersects with the observation date. On an earlier observation date, the peak forecast is possible, 
but less reliable.

On empirical observations of the passage of the COVID-19 infection peak, after the formation 
of the peak date that intersects with the observation date, the final date of the peak recedes back 
(about a week) and a steady trend begins to decrease the intensity of infection, i.e. the regression 
of the epidemic.

4. MODEL INDEX MORTALITY

There are three parameters for monitoring that are updated daily, at time t. This is the number 
of cases in which the virus is confirmed (Confirmed, C(t)), the number of recovered (Recovered, 
R (t)), and the number of deaths (Deaths, D (t)). Up-to-date data and graphs of these parameters 
can be seen on the Johns Hopkins CSSE University website (Johns Hopkins CSSE, 2019). These 
parameters are sufficient to determine the death rate as a percentage of patients with RIP(t) and 
determine the average signal duration of the disease, i.e. hospitalization, T(t). Due to the spread of 
the disease and the fact that new cases have not yet died, the value of RIP(t) will be greater than 
the minimum value of low RIP(t) = D(t) / C(t) and less than the limit of mortality among those who 
have already been ill or died, equal to up RIP(t) = D(t) / (D(t) + R(t)). LowRIP and upRIP param-
eters are called naive estimates in the literature. If the spread of the epidemic stops and it takes a 
long time, these parameters will be equal to upRIP = lowRIP = RIP. However, this is not the case 
during the development of the epidemic, lowRIP (t) < RIP(t) < upRIP(t). Therefore, a model is re-
quired to evaluate RIP(t) and T(t), which will also be significant indicators of the effectiveness of 
the disease treatment process, a measure of the threat to the life of any person who may become a 
victim of the epidemic, and a macroeconomic factor that affects the economy and GDP as a whole.

To model the desired parameters, certain simplifying assumptions must be proposed. They 
should be as natural as possible and preferably simple. So:

• First – the sick patient is hospitalized for a certain time T, the same for all, after this 
period, he either recovers (Recovered) or is dead (Deaths).

• Second – during the period of illness s = 0 ... T, the proportion of dying patients is 
distributed evenly and is equal to d(s) = RIP ∙ s / T, i.e. at the end of the period, this 
proportion is just equal to d(T) = RIP.

Then the number of recovered patients at the current (or past) time t can be formed only from 
those who were infected with the term T in the countdown back (on the date t-T)

R(t) = C(t-T) ∙ (1-RIP) (9)

This will be the first equation in which T and RIP are unknown.

On the other hand, the number of deaths will be formed from those who became ill time T or 
more ago and from those who became ill recently but die gradually. Then,

 (10)
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where C(s)-C(s-1) is the number of new cases for each day of the last t period. This will be the 
second equation of the model (9-10), which will make it possible to determine the desired two 
parameters RIP and T at each moment t (i.e. RIP(t) and T(t)).

As the calculations showed, this problem is uniquely solved and gives the result shown in the 
graphs figures 2 and 3.

Figure 2. Dynamics of the true mortality rate from coronavirus (as a percentage of cases) for 
a certain period (in the center) in comparison with the lower and upper bounds obtained from 

a primitive arithmetic calculation.
Source: author’s calculations as of 18.02.2020, given by Johns Hopkins CSSECOVID-19 China

Figure 3. Average calculated dynamics of the duration of hospitalization  
of a recovering patient (in days). 

Source: author’s Calculations on 18.02.2020, data from Johns Hopkins CSSE COVID-19 China

From figure 2 it can be seen that there is a tendency to decrease the true mortality rate from 
5.5% to 4.5%, but it is too early to say that it is stable in the presented period of the report. Fig-
ure 3 shows an increase in the duration of hospitalization, apparently related to medical policies.

For practical implementation of calculations of mortality indices that are resistant to non-smooth 
dynamics of recorded cases of infection, recovery and death3, it is recommended to switch to the 
continuous functions C(t), R(t) and D(t).

3 Data is updated no more than once a day.
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One way is to approximate these functions by smoothing splines (Hastie and Tibshirani, 1990). 
An alternative and easier-to-implement interpolation possibility in this problem is provided by 
using a parametric approximation function of type (3) for all three time series C(t), R(t) and D(t), 
since R + D is, in fact, a lagging function of C(t), D is a fraction of C(t). In any case, the RIP will 
be of interest primarily from the point of view of dynamics in the development of the epidemic, 
and the dynamics will be correctly reflected with a simpler than spline smoothing interpolation. 
The accuracy requirements for calculating the index are not as high.

When switching to continuous functions, equations (9-10) will be converted to integral relations, 
the first of which will determine the index T(t) of the period of recovery/hospitalization/death. T (t) 
will be the solution of a nonlinear equation with unknown T obtained after transformation (9-10):

 (11)

After solving equation (11), which is the only one, it is possible to uniquely determine the le-
thality index using the formula

 (12)

The proposed (11-12) method of calculating the mortality index from the point of view of prac-
tice has an obvious advantage in that it is mainly determined by the last period of the disease 
and infection/recovery/death of all patients, determined by the index period of hospitalization. 
This means that the proposed RIP index should respond promptly to changes in the conditions 
of the disease course, associated with the appearance of effective treatment, mutations of the 
infection carrier, reaching the limit of medical resources and reducing the quality of treatment, 
changing the number of patients, etc.

Here are some examples of the dynamics of the RIP, lowRIP and upRIP index calculated for 
countries with early COVID-19 infection as of the reporting date 20.04.2020, as presented in 
figure 4.

Figure 4. COVID-19 lethality indices for the countries of Iran (left) and South Korea (right). 
Source: author’s calculations on 29.04.2020,  

data from Johns Hopkins CSSE COVID-19 Iran, South Korea.

From the presented examples, a significant difference in the behavior of RIP indices in both 
dynamics and absolute value is visible. So, in Iran, the index first rose, then fell, and in South 
Korea - the opposite. However, the indices differ by 3-4 times in absolute values.



MODELING OF COVID-19 PANDEMIC INDICES  
AND THEIR RELATIONSHIPS WITH SOCIO-ECONOMIC INDICATORS

19

5. EXAMPLES IN TIME-RESULTS OF MODELING OF COVID-19 INDICES 
IN EUROPEAN COUNTRIES (DATA FROM 15.06.2020)

In order not to clutter this study with reporting material, the author uses two European countries 
Italy and the United Kingdom as demonstration examples of COVID-19 propagation modeling, 
as presented in figure 5.

Figure 5. Modeling of peak COVID-19 parameters for Italy (left) and UK (right). 
Source: Author’s calculations as of 15.06.2020, data from Johns Hopkins CSSE COVID-19

From the first graphs above, it can be seen that the model forecast of peak infection rates be-
comes relatively stable after the forecast date reaches the date of the peak itself. After this peri-
od, the forecast for the peak date is adjusted slightly. Also, the forecast of the maximum number 
of infected people becomes relatively stable after passing the peak of the epidemic.

However, the presented static model (1), (2) is based on the assumption of a monotonous impact 
of the socio-economic regime of self-isolation on the containment of the spread of the pandemic. 
This is not always true, so repeated outbreaks of infection are possible, which are unpredictable 
and may be the result of mistakes by governments to mitigate the regime, mass riots, natural 
disasters, etc. The analysis of these processes and their consequences on the dynamics of the 
spread of the epidemic is the subject of separate scientific research.
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Table 1 shows several important parameters of the COVID-19 pandemic for the largest Euro-
pean countries.

Table 1. Some parameters of COvid-19 in the largest European countries.

Country С now RIP
Peak data 
forecast

Start: 
t_100

Peak - 
t_100, days

Finish of a 
high secu-
rity “90%” 
(forecast)

Finish 
self-isola-
tion “99%” 
(forecast)

max C 
forecast in 
% of the 
population

Deaths 
forecast

United 
Kingdom 297 342 26,5% 18.04.2020 05.03.2020 45 06.06.2020 25.07.2020 0,48% 84 071
Italy 236 989 15,1% 28.03.2020 22.02.2020 35 06.05.2020 14.06.2020 0,39% 36 028
France 194 153 17,6% 03.04.2020 09.03.2020 25 02.05.2020 30.05.2020 0,28% 34 084
Germany 187 518 4,8% 30.03.2020 03.03.2020 27 29.04.2020 30.05.2020 0,23% 9 074

Source: author’s calculations as of 15.06.2020, data from Johns Hopkins CASE COVER-19

From Table 1 it can be seen that the level of true RIP mortality, calculated according to the mod-
el of item 4., for the UK is significantly higher than the average level, the minimum is found in 
Germany. The period of „rampant” pandemic «Peak - t_100» before the peak period is also sig-
nificantly higher in the UK than in other countries, as well as the percentage of infected people 
from the population.

The next chapter will present a result on the relationship of pandemic parameters with so-
cio-economic factors in the statistics of countries that have passed the peak of the pandemic on 
the current date of 15.06.2020.

6. STUDY OF THE RELATIONSHIP OF SOCIO-ECONOMIC INDICATORS 
WITH THE PARAMETERS OF THE COVID-19 PANDEMIC

Before you start presenting research results, you need to make a disclaimer related to the pre-
liminary nature of these results. At the time of writing, the COVID-19 pandemic is far from 
its final phase in the most countries of the World. Therefore, the study of the relationship with 
socio-economic indicators is based on the forecast (model) values of COVID-19 parameters. By 
the time this work is published, certain refinements may be relevant. Nothing stands still, but 
the value of the research lies, among other things, in the method of building leading conclusions 
made in «in-time» mode. The value of such conclusions is particularly significant if they can 
prevent future mistakes in socio-economic containment of the spread of the disease.

Of the 84 countries that were affected by the pandemic, with the number of officially infected 
more than 1000 people on 15.06.2020, only 60 countries that participate in the statistical study 
passed the peak of infection. Exogenous variables are the parameters of the pandemic. These 
parameters are expected to change slightly over time for those countries where the peak of the 
pandemic has already passed by the time of the study.

Exogenous variables (author’s calculations on 17.05.2020)
• RIP – Fatality (lethality) Index in a given country (model forecast)
• α - The constant is responsible for the effectiveness of the measures taken in a given 

country (model forecast)
• α ∙ γ - Pandemic Rate Index (or detection rate of number of infected) in a given country 

(model forecast)
• Cmax - Maximum number of infected people in a given country (model forecast)



MODELING OF COVID-19 PANDEMIC INDICES  
AND THEIR RELATIONSHIPS WITH SOCIO-ECONOMIC INDICATORS

21

• The endogenous parameters for the regression model will be socio-economic indicators 
presented by the World Bank (The World Bank. Indicators). There are more than 150 of 
these indicators, and the study involved indicators calculated for the closest date to the 
present, which is available in the World Bank database.

Endogenous variables (regressors, World Bank):
• Agriculture & Rural Development
 Agricultural land (% of land area)
 Agricultural methane emissions
 etc.
• Climate Change
 CO2 emissions
 Disaster risk reduction progress score
 Ease of doing business index
 Electric power consumption
 etc.
• Social Development
 Public Sector
 Trade
 Health
 etc.

A nonlinear multiple regression model is constructed, and the minimum number of indicators 
that are significant for exogenous variables is selected. The quality level of the model is estimat-
ed by the R-square coefficient of determination. Additional tests are made, the main of which is 
the Breusch-Pagan test (Breusch and Pagan, 1979), to check for the presence of heteroscedastic-
ity of random errors in the regression model. Economic consistency is analyzed.

Specifications of regression models
1. Non-linear multiple regression 

2. All regressors are statistically significant (p-value)
3. Regression Quality Level (High = R-square>90%, Intermediate = 50%<R-square<90%, 

Low = R-square<50%)
4. Heteroscedasticity (Yes = Breusch - Pagan test, significance>10%, No is less 10%)
5. Economic consistency of model coefficient signs

The aim of the study is to identify factors and their combinations that explain the COVID-19 pandem-
ic parameters, as well as pandemic parameters that cannot be meaningfully explained using World 
Bank indicators. More than 1 million models of various combinations of regressors are studied.

The results of the study are presented in Table 2.

For the „True mortality index” parameter, Rip was not able to find any meaningful model. The 
quality of the regression was low. The economic consistency of signs in variables was ambig-
uous. To measure the effectiveness of measures taken (to control the pandemic) it was also not 
possible to find a regression model of any significant quality.
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For the parameter α∙γ, which is responsible for Pandemic Rate (or detection rate of number of 
infected), we found a satisfactory model with an R-square level of 70%. Even more success was 
achieved for the parameter of the maximum number of infected citizens of those countries that 
were included in the study. We managed to find a whole series of very effective models that 
have a high determination (R-square of 90%), a low level of heteroscedasticity and economic 
consistency of regressors.

Table 2. General result of regression modeling of covid-19 exogenous parameters
Exogenous 
variables Interpretation Regression 

Quality Level Heteroscedasticity Economic 
consistency 

RIP Fatality (lethality) Index Low Yes Ambiguously

α The effectiveness of the 
measures taken Low Yes Yes

α∙γ
Pandemic Rate Index (or 
detection rate of number of 
infected)

Intermediate No Yes

Cmax Maximum number of infected 
people High No Yes

Table 3. The most powerful regressors explaining the parameters of the COVID-19 pandemic 
identified during the active period for 60 countries (15.06.2020)

Target variable Regressor№1 Regressor№2 Regressor№3

Pandemic Rate 
Index (or detection 
rate of number of 
infected)

69%

Railways, 
passengers carried 
(million passenger-
km) x Specialist 
surgical workforce 
(per 100,000 
population)

GDP per capita, 
PPP (current 
international $) x ln 
Hospital beds (per 
1,000 people)

Life expectancy at 
birth, total (years) 
x International 
tourism, number of 
arrivals

GDP per capita, 
PPP (current 
international $) x ln 
Hospital beds (per 
1,000 people)

International 
tourism, number 
of arrivals x ln 
Agricultural land (% 
of land area)

Railways, 
passengers carried 
(million passenger-
km) x GDP 2018

Air transport, 
passengers carried 
x Agriculture, 
forestry, and fishing, 
value added (% of 
GDP)

Life expectancy at 
birth, total (years) x 
Life expectancy at 
birth, total (years)

International 
tourism, number 
of arrivals x ln 
Hospital beds (per 
1,000 people)

Railways, 
passengers carried 
(million passenger-
km) x Specialist 
surgical workforce 
(per 100,000 
population)

GDP per capita, 
PPP (current 
international $) x ln 
Hospital beds (per 
1,000 people)

International 
tourism, number of 
arrivals x ln Life 
expectancy at birth, 
total (years)

Railways, 
passengers carried 
(million passenger-
km) x Specialist 
surgical workforce 
(per 100,000 
population)

GDP per capita, 
PPP (current 
international $) x ln 
Hospital beds (per 
1,000 people)

International 
tourism, number of 
arrivals
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max C forecast 89%

Netmigration x 
Population

CO2 emissions 
(metric tons per 
capita) x Population

 

Netmigration x 
Population

Air transport, 
registered carrier 
departures worldwide 
x Population

International 
tourism, number 
of arrivals x 
International 
tourism, 
expenditures (% of 
total imports)

Air transport, 
passengers carried 
x International 
tourism, 
expenditures (% of 
total imports)

Netmigration x 
Population

 

The purpose of this part of the study is not to present «Plug and Play» forecast models, but only 
to show what socio-economic factors initially determine the scale and speed of the pandemic. 
And they turned out to be logical, and hypothetically they should have been proposed, without 
any statistical research. But the value lies in the fact that the determining factors are confirmed 
by statistical research.

So, we make sure on the statistics COVID-19, which is the number of infected in the country 
is influenced by uncontrollable factors – population industrial capacity of the country and its 
production (as expressed in GDP, CO2, etc.)

And managed ones, namely:
• • power communication (migration, the number of human exchanges through the trav-

el and transportation including railway transport), tourism, etc.

Including visible factors responsible for the speed of social reaction. These are the country’s 
medical parameters:

• • ln Hospital beds (per 1,000 people)
• • Life expectancy at birth, total (years)

These are the key points that you should pay attention to first of all to prevent consequences. 
If tourism is harmful (in terms of the risk of epidemics), then this is true. But it is not possible 
to stop it, it is necessary to strengthen infection control. This is also obvious for the level of 
development of medicine.

7. CONCLUSION

The theoretical part of the presented work offers a very relevant, in our opinion, model that 
allows us to make adequate predictions about the spread of the epidemic at the moment of its 
active phase. This is especially relevant for the operational management of the socio-economic 
risks posed by the epidemic (pandemic). Unlike classic epidemic models, the presented model 
takes into account socio-economic counteraction to infection, focused on creating restrictions 
in the form of self-isolation, quarantine measures, etc. The model is static, in the sense that the 
factor of the reaction of society is assumed to be constant. In those countries where this hy-
pothesis is acceptable, infection dynamics are observed in full accordance with the model. We 
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understand that in practice this is not quite true, therefore, second and other subsequent waves 
that are observed are possible. How and from what they come is a topic of future research. The 
paper proposes a certain basis for further, more complex modeling.

The practical part of study showed that countries with developed infrastructure for international 
and domestic movements, as well as high migration, have the maximum number of infected. It 
clearly demonstrates the need for greater monitoring of these activities to prevent future pandemics.
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