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Abstract: This paper focuses on the development and impact of the Black-
Scholes-Merton (Black-Scholes) model in mathematical finance. It begins with 
an overview of the Black-Scholes model, including its foundational assumptions, 
the Black-Scholes equation, and its formula for pricing European options. The 
paper discusses the model’s significant advantages, such as its ability to estimate 
market volatility and provide a self-replicating hedging strategy. It also addresses 
its limitations, including assumptions of constant volatility and perfect market 
conditions, which often do not align with real-world scenarios. Finally, this paper 
reviews advancements that have refined the model, including adjustments for 
stochastic volatility, price jumps, and market imperfections. 
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1. INTRODUCTION

Trading has always been seen as an opportunistic endeavor, mainly fueled by finances and 
active traders’ investments and most of the trading happens in financial markets. Financial 

markets, as the name itself suggests, are marketplaces that facilitate the buying and selling of dif-
ferent assets such as bonds, stocks, foreign currencies, and derivatives (Howells & Bain, 2007). 
These markets facilitate and make possible the exchange of different material and monetary funds 
between investors, lenders, and borrowers, enabling efficient allocation of resources and capital. 
These markets are also central to the mathematical theory of finance, which is why much effort 
especially in the last decades, has been devoted to developing techniques and models to forecast 
and predict market volatility (Karatzas et al., 1998). 

Options are one of the key securities of financial markets and they are defined as the financial 
derivatives that give buyers the right, but not the obligation, to buy or sell an underlying asset at an 
agreed-upon price and date They are divided into two main categories, respectively a call option 
and put option. These two option types, in combination with each other form the basis for a wide 
range of option strategies designed for hedging, income, or speculation (Ross, 2011). Furthermore, 
options can be categorized according to when they may be exercised by the buyer or their exercise 
style. In this paper, only the European Option2 will be discussed. 

As previously mentioned, options hold a very important role in financial markets, yet the concepts sur-
rounding their calculation and pricing have historically been complex and difficult to understand and 
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2 A European option is a type of options contract that permits investors to exercise their rights only on the 

contract's expiration date. The holder has the right to buy or sell the underlying asset at a predetermined 
price, referred to as the option's strike price (Yoshida, 2003).
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predict. It wasn’t until 1973 that a breakthrough occurred with the introduction of the options exchange, 
marking a pivotal moment in the evolution of option pricing theory. That year, economists Fischer Black 
and Myron Scholes published what would become the dominant theory of how to value and price options, 
known as the Black-Scholes Model (Black & Scholes, 1973). Robert C. Merton, on the other hand, was 
the first to publish a paper that expanded the mathematical understanding of the options pricing model 
and introduced the term “Black–Scholes Options Pricing Model” (Bodie, 2019). The equation and model 
are named after the first two economics, but Merton is sometimes also credited. From this point on, 
this paper will only refer to the Black-Scholes-Merton Model as only the Black-Scholes Model. This 
new model provided a new way of valuing European options showing that an option has a unique price, 
which is not affected by the risk and return on an underlying asset of that particular option (Ross, 2011).

It was however possible to advance the Black-Scholes Model, and one of the scholars who did so 
was exactly Robert Merton who improved on the model in many important respects, making it 
more applicable (Bodie, 2019). Following this, numerous other influential papers and extensions 
of the model were developed.

2. BLACK-SCHOLES MODEL

The Black-Scholes model is a pricing model that was developed in 1973 and framed the development 
of most subsequent pricing models (Black & Scholes, 1973). Originally, it was used to price European 
options and was the first widely adopted mathematical formula for pricing options. It is also often 
credited with driving the growth of options trading and is considered a major milestone in modern 
financial pricing. The Black-Scholes Model is used to calculate the fair price of options based on six 
key variables: volatility, option type, underlying stock price, strike price, time to expiration, and the 
risk-free interest rate. Rooted in the principle of hedging, the model aims to eliminate risks arising 
from the volatility of the underlying assets and stock options (Durrett, 2019). The Black–Scholes 
equation, a partial differential equation in the model, can be used to derive the Black–Scholes formula, 
which offers a theoretical estimate of the price of European-style options (Black & Scholes, 1973). 
This formula demonstrates that the option has a unique price regardless of the security’s risk and 
expected return (Black & Scholes, 1973). The model’s introduction revolutionized financial markets 
by allowing for more precise pricing of options and laid the groundwork for the development of 
future option pricing theories. The formula assumes the underlying stock price follows a geometric 
Brownian motion with constant volatility. The geometric Brownian motion can be shown as follows:

 (1)

where S is the current price of the stock, dS the change in the stock price, µ is the expected rate of 
return, σ is the volatility and dw is the part follows a Wiener process. The first term of Equation 
(1) is used to model deterministic trends, while the second is often used to model a set of unpre-
dictable events occurring during the geometric Brownian motion (Durrett, 2019). This stochastic 
process helps to account for the randomness and uncertainty in stock price movements over time, 
which is a key feature of financial markets. It also provides a foundation for deriving option pricing 
models by incorporating both expected returns and market volatility.

3. BLACK-SCHOLES ASSUMPTIONS

A derivative from the geometric motion base of the Black-Scholes formula is needed in order to 
come up with a closed form pricing solution for European call and put options. Before getting into 
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the mathematical details and calculations, it is important to note that the Black-Scholes formula can 
only be derived and subsequently used to deliver possible results only under specific assumptions. 
These assumptions that need to be met include: (Del Giudice et al., 2015):
1. Markets are always efficient and open.
2. There are no taxes or transaction costs. 
3. The risk-free interest rate is known and remains constant over time.
4. The volatility of the underlying asset’s price is known and remains constant.
5. The price movements of the underlying asset follow a lognormal distribution, meaning that 

the capitalized returns are normally distributed. 
6. The option can only be exercised at the expiration date, as it is a European option.
7. There are no dividends during the life of the option (Del Giudice et al., 2015). 

4. DEVIATION OF THE BLACK-SCHOLES EQUATION

First note the following variables: S = stock price, t = time, V = V (S, t) = is the price of the option 
as a function of stock price S and time t, r is the risk-free interest rate, and σ is the volatility of the 
stock (Hull & Basu, 2016).

Given the complexity and mathematical knowledge required to derive the Black-Scholes Formula 
through the Black-Scholes equation, this paper will adopt a step-by-step approach to its expla-
nation. By breaking down the technical aspects, the goal is to make the concept accessible and 
understandable to a broader audience.

The starting point is the Itô’s Lemma for two variables (Hull & Basu, 2016):

 (2)

Now consider a specific portfolio known as the delta-hedge portfolio, which involves being short 
one option and holding ∂V/∂S shares at time t (Hull & White, 2017). The value of these holdings is:

 (3)

Over the time period [t, t+∆t ], the total profit (or loss) from changes in the values of the holdings is:

 (4)

In this step it is important to discretize the equations for dS/S and dV by replacing differentials 
with deltas:

 (5)

  (6)

while appropriately substituting them into the expression for ∆Π:

 (7)
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Note that the term ∆w has disappeared, indicating that uncertainty has been removed and the 
portfolio is now effectively risk-free (Hull & Basu, 2016). The rate of return on this portfolio must 
match the rate of return on any other risk-free asset; otherwise, arbitrage opportunities would 
arise. Assuming a risk-free rate of return r, the following must hold over the time period [t, t+t ]: 

 (8)

When substituting the formulas for ∆Π and Π = ∫∆Π, then:

  (9)

By simplifying the previous equation (9), the renowned Black-Scholes partial differential equation 
is obtained: 

 (10)

The fundamental financial point of the equation is that by buying and selling in a strategic manner 
the underlying asset, one can perfectly hedge the option, meaning that one can potentially com-
pletely “eliminate risk” (Hull & Basu, 2016). It will be seen later while discussing the limitations 
of the model in Section 6, that eliminating risk is not feasible in the real-world context. 

5. BLACK-SCHOLES FORMULA

As mentioned earlier, the Black–Scholes formula is used to calculate the price of European put and 
call options, in accordance with the Black–Scholes equation discussed in the previous chapter. In 
the Black-Scholes model, the value of a call option can be expressed as a function of five variables.

The value of a call option on a non-dividend-paying underlying stock, based on the Black-Scholes 
parameters, is given as (Black & Scholes, 1973):

 for (11)

 and (12)

  (13)

where N is the cumulative distribution of the standard normal distribution, T-t is the time to 
maturity (expressed in years), St is the spot price of the underlying asset, K is the strike price, r 
is the risk free and σ is the volatility of returns of the underlying asset (Black & Scholes, 1973).

The price of the corresponding put option based on put-call parity is then given by (Jiang, 2019):

 (14)

6. ADVANTAGES AND LIMITATIONS OF THE BLACK-SCHOLES MODEL

The Black Scholes model is one of the concepts in financial theory that can be said to be a major 
breakthrough in both the way it is conceived and the way it is applied. Its most important advantage 
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is that it can determine the market volatility of an underlying asset —typically based on price 
and time—without regard to the investor’s attributes such as the expected return, risk attitude, or 
utility functions (Teneng, 2011). 

In this section of the paper, some of the main advantages of the Black Scholes model will be listed, 
as well as some of its limitations. The key advantages of the model are (Teneng, 2011):
1. Market Volatility Assessment: The Black-Scholes model is able to estimate the market vol-

atility for an underlying asset, typically as a function of price and time, without requiring 
any identifying characteristics of the investor such as the expected return, risk tolerance, or 
the utility function.

2. Self-Replicating Strategy (Hedging): The model offers a self-replicating strategy, which 
allows investors to continuously buy and sell derivatives and underlying assets in a way 
that replicates the payoff of a derivative security at maturity. This strategy acts as a form of 
insurance, ensuring that any loss on one side of the portfolio is exactly compensated by a 
gain on the other side.

3. Absence of Arbitrage Opportunities: The implications of the Black-Scholes model include the 
absence of arbitrage, which is the ability to make riskless profit in the financial markets – due 
to the assumption that money movements occur in such a manner that there is a net zero profit 
or loss to any one portfolio which means that no “risk free” cash is available in the marketplace. 
Furthermore, the portfolio is self-financing, with no need for additional funds.

4. Wide Usage: The Black-Scholes model has a universal scope as it does not depend on any 
particular investor classes. This is the reason why it is among the most successful models in 
finance with a wide range of applications in various markets and instruments.

Despite its widespread use, the Black-Scholes model is based on several unrealistic market assump-
tions (Teneng, 2011) leading to some model limitations (Janková, 2018):
1. Constant Volatility: The model assumes volatility remains constant over time, which is not 

the case in reality. Volatility often clusters and is influenced and determined by factors such 
as trading volume and asset price returns. 

2. Random Walk and Independence: It presumes that stock prices follow a random walk and 
that future prices are independent of past prices. On the contrary, movements in the stock 
or bond markets respond to macroeconomic events and prices are often auto correlated and 
are volatile clusters.

3. Log-Normal Distribution: The model assumes returns are log-normally distributed, but real 
financial data and historical datasets often show heavier tails and finite variance, differing 
from the log-normal assumption.

4. Constant Interest Rates: It assumes a risk-free rate that is constant, this is not realistic because 
in the real world, white interest rates, rates do not stay constant.

5. No Dividends: The basic model assumes that the underlying stock does not pay dividends. 
In practice, more often than not, dividends are a common occurrence, though adjustments 
can be made to account for them.

6. No Transaction Costs: It also does not account for transaction costs and commissions when 
engaging in buying and selling which is unrealistic in a real environment.

7. European-Style Options: The model applies to European-style options, which can only be 
exercised at expiration. It does not account for the flexibility of American-style options that 
can be exercised at any time.

8. Perfect Liquidity: It assumes markets are perfectly liquid with no constraints on buying or 
selling amounts, which is not always the case in real markets.
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These were some of the advantages and limitations of the Black-Scholes Model discussed in this 
paper. Inspired by these limitations, many researchers have developed extensions of this model 
which will be mentioned in the upcoming section. 

7. UPGRADES OF THE BLACK-SCHOLES MODEL

Numerous models have sought to address the limitations of the Black-Scholes model, particularly in 
response to real-world issues such as stochastic volatility, market illiquidity, and market imperfections. 
The Heston Model, developed in 1993, is one of the notable improvements over the previous model 
because it introduces stochastic volatility, allowing volatility to fluctuate according to its own stochastic 
process (Heston, 1993). This model better captures the volatility clustering observed in financial markets 
compared to the constant volatility assumption of the Black-Scholes model. The Heston model is also 
less restrictive since it allows for market friction by modelling the correlation between the prices of 
assets and stochastic volatility (Wilmott, 2000). As a result, it is better suited for capturing the dynam-
ics of volatile markets, accommodating changing volatility levels, and capturing the volatility smile.

Another important extension is the GARCH (Generalized Autoregressive Conditional Heteroskedas-
ticity) model, which models volatility as a function of past returns and past volatility, accommodating 
time-varying volatility (Duan, 1995).

In addition to stochastic volatility, the Jump-Diffusion Model, introduced by Merton in 1976, addresses 
the issue of sudden, large price movements by incorporating jumps in asset prices alongside continu-
ous changes (Merton, 1976). This model is one of the first beyond Black-Scholes model in the sense 
that it tries to capture the negative skewness and excess kurtosis of the log stock price density by a 
simple addition of a compound Possion jump process (Matsuda, 2004). The Local Volatility Model, 
developed by Dupire in 1994, allows volatility to vary as a function of both the underlying asset 
price and time, providing a more accurate fit to market data and addressing discrepancies between 
implied volatility and observed prices (Dupire, 1994).

In order to consider the issues related to liquidity and market imperfections, models such as the 
Extended Vasicek Model have taken interest rate dynamics into account while considering liquidity 
constraints and market frictions (Vasicek, 1977). Vasicek’s model was the first to incorporate mean 
reversion3, a feature that set interest rates apart from other financial prices. Unlike stock prices, which 
can potentially increase without limit, interest rates are constrained because excessively high rates 
would hinder economic activity, leading to a subsequent decline. Similarly, interest rates rarely fall 
below zero (Vasicek, 1977). Consequently, interest rates tend to fluctuate within a confined range, 
consistently gravitating back toward a long-term average (Brigo & Mercurio, 2006). These advance-
ments represent significant progress in option pricing theory, offering more realistic frameworks that 
better reflect the complexities observed in financial markets in the real world.

8. CONCLUSION

To summarize, it can be said that the development of the Black-Scholes model has contributed to 
the advancement of financial theory in a notable way, providing a practical solution for European 
option pricing. Nonetheless, its limitations make it hard to apply the model in practice as perfect 
market conditions or constant volatility and interest rates are rare in real-life financial markets. It 

3 Mean reversion is a financial theory which suggests that, after an extreme price move, asset prices tend to 
return back to normal or average levels (Exley et al., 2004).
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is these limitations that have resulted in more sophisticated models such as stochastic volatility 
models, jump-diffusion models, and local volatility models which solve the problem of price jumps 
in an illiquid market. All of these improvements in pricing models for financial options testify to the 
changing face of financial markets, as well the desire to capture more of the market as it is. As much 
as the Black-Scholes model has acted as the go-to option valuation model and remains a foundational 
tool, the subsequent refinements and alternative models that have been developed have gone further 
in bringing real environments to theories of option pricing concerning the ever-volatile market forces.
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