fbpx

Vlado Georgievski – Faculty of Electrical Engineering and Information Technologies, โ€œSs. Cyril and Methodiusโ€ University in Skopje, Rugjer Boลกkoviฤ‡ bb, P.O. Box 574, 1001 Skopje, Republic of North Macedonia

Nevenka Kiteva Rogleva – Faculty of Electrical Engineering and Information Technologies, โ€œSs. Cyril and Methodiusโ€ University in Skopje, Rugjer Boลกkoviฤ‡ bb, P.O. Box 574, 1001 Skopje, Republic of North Macedonia

Keywords:ย  ย  ย  ย  ย  ย  ย  ย  ย  Decarbonization;
CO2 reduction;
Net-zero strategy;
Power utilities

DOI: https://doi.org/10.31410/ERAZ.2023.463

Abstract: Decarbonization of the power sector means a reduction of its CO2 intensity, which reduces the emission of carbon dioxide per unit of electriciยญty generated. In order to meet the emission reduction targets pledged to the Paris Agreement on climate change, power utility companies need to develยญop strategies on how to decarbonize their generation assets. Companies must achieve carbon neutrality by 2050, which is necessary to meet the targets of the Paris Agreement of capping global temperature rise at 1.5ยฐC and to meet the less ambitious 2ยฐC target. Rapid decarbonization of the power sector is needed particularly as heat and transport sectors are electrified, creating an increase in demand for electric power. Decarbonization is being achieved by increasing the share of low-carbon energy sources, particularly renewables, and a corresponding reduction in the use of fossil fuels. Worldwide, renewaยญbles now produce a third of power capacity.

9th International Scientific ERAZ Conference โ€“ ERAZ 2023 โ€“ Conference Proceedings: KNOWLEDGE BASED SUSTAINABLE DEVELOPMENT, hybrid โ€“ online, virtually and in person, Prague, Czech Republic, June 1, 2023

ERAZ Conference Proceedings published by: Association of Economists and Managers of the Balkans – Belgrade, Serbia

ERAZ conference partners: Faculty of Logistics, University of Maribor, Maribor (Slovenia); University of National and World Economy โ€“ UNWE, Sofia (Bulgaria); Center for Political Research and Documentation (KEPET), Research Laboratory of the Department of Political Science of University of Crete (Greece); Institute of Public Finance โ€“ Zagreb (Croatia); Faculty of Tourism and Hospitality Ohrid, University of St. Kliment Ohridski from Bitola (North Macedonia)

ERAZ Conference 2023 Conference Proceedings: ISBN 978-86-80194-72-1, ISSN 2683-5568, DOI: https://doi.org/10.31410/ERAZ.2023

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-Non-Commercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission.ย 

Suggested citation

Georgievski, V., & Kiteva Rogleva, N. (2023). Decarbonization Initiatives among Leading Power Utility Players.ย In V. Bevanda (Ed.), ERAZ Conference – Knowlegde Based Sustainable Development: Vol 9. Conference Proceedings (pp. 463-473). Association of Economists and Managers of the Balkans. https://doi.org/10.31410/ERAZ.2023.463

References

Biofit Factsheet Coal Conversions. (2020). Coal to Biomass Conversions. https://www.biofit-h2020.eu/publications-reports/Biofit-Factsheet_CoalConversions.pdfย 

Crolius, S. H. (2019, July 18). The Evolving Context of Ammonia-Coal Co-Firing. Https://Www.Ammoniaenergy.Org/Articles/the-Evolving-Context-of-Ammonia-Coal-Co-Firing/

Davis, S. J., Lewis, N. S., Shaner, M., Aggarwal, S., Arent, D., Azevedo, I. L., Benson, S. M., Bradley, T., Brouwer, J., Chiang, Y. M., Clack, C. T. M., Cohen, A., Doig, S., Edmonds, J., Fennell, P., Field, C. B., Hannegan, B., Hodge, B. M., Hoffert, M. I., โ€ฆ Caldeira, K. (2018). Net-zero emissions energy systems. In Science (Vol. 360, Issue 6396). American Association for the Advancement of Science. https://doi.org/10.1126/science.aas9793

EIA. (2020). Capital Cost and Performance Characteristic Estimates for Utility Scale Electric Power Generating Technologies. https://www.eia.gov/analysis/studies/powerplants/capitalยญcost/pdf/capital_cost_AEO2020.pdf

Energy, E., Andersen, S. H., Sadler, D., & Sotiropoulos Michalakakos, T. (2019). Hy-Impact Seยญries Hydrogen in the UK, from technical to economic. https://www.element-energy.co.uk/wordpress/wp-content/uploads/2019/11/Element-Energy-Hy-Impact-Series-Summary-Docยญument.pdfย 

Georgievski, V., & Kiteva, R. N. (2022, September 23). Decarbonization initiatives among leadยญing power utility players. Conference Proceedings / International Conference โ€œEnergetics 2022.โ€ https://zemak.mk/zbor-dva-za-megunarodnata-konferencija-energetika-2022/

Goldmeer, J. (2019). Power to Gas: Hydrogen for Power Generation. https://www.ge.com/content/dam/gepower/global/en_US/documents/fuelflexibility/GEA33861%20Power%20to%20Gas%20%20Hydrogen%20for%20Power%20Generation.pdfย 

IEA. (2014). Emissions Reduction through Upgrade of Coal-Fired Power Plants. https://www.iea.org/reports/partner-country-series-emissions-reduction-through-upgrade-of-coal-fired-power-plantsย ย 

IEA-ETSAP, & IRENAยฉ Technology Brief E21. (2013). Biomass Co-firing. https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2013/IRENA-ETSAP-Tech-Brief-E21-Bioยญmass-Co-firing.pdfย ย 

Nik, M. (2022, August 30). Energy crisis: Can the EU tame soaring prices? https://www.dw.com/en/energy-crisis-can-the-eu-tame-soaring-prices/a-62960012ย 

Pawlakโ€“Kruczek, H., Czerep, M., Niedzwiecki, L., Karampinis, E., Violidakis, I., Avagianos, I., & Grammelis, P. (2019). Drying of Lignite of Various Origins in a Pilot Scale Toroidal Fluidยญized Bed Dryer using Low Quality Heat. Energies, 12(7). https://doi.org/10.3390/en12071191ย 

Qvist, S., Gล‚adysz, P., Bartela, ล., & Sowiลผdลผaล‚, A. (2021). Retrofit decarbonization of coal power plantsโ€”A case study for Poland. Energies, 14(1). https://doi.org/10.3390/en14010120ย 

Rystad Energy. (2022, April 26). Carbon capture capacity poised to surge more than 10 times by 2030, but aggressive investment needed to meet mid-century targets. https://www.rystadenยญergy.com/newsevents/news/press-releases/carbon-capture-capacity-poised-to-surge-more-than-10-times-by-2030-but-aggressive-investment-needed-to-meet-mid-century-targetsย 

Sanchez del Rio, M., Gibbins, J., & Lucquiaud, M. (2017). On the retrofitting and repowering of coal power plants with post-combustion carbon capture: An advanced integration option with a gas turbine windbox. International Journal of Greenhouse Gas Control, 58, 299โ€“311. https://doi.org/10.1016/j.ijggc.2016.09.015ย 

Sarunac, N., Ness, M., & Bullinger, C. (2014, November 1). Improve Plant Efficiency and Reยญduce CO2 Emissions When Firing High-Moisture Coals. https://www.powermag.com/improve-plant-efficiency-and-reduce-co2-emissions-when-firing-high-moisture-coalsย ย 

Statistisches Bundesamt. (2022, September 9). Statistisches Bundesamt (Destatis). https://Www.Destatis.De/ย ย 

Tamura, M., Gotou, T., Ishii, H., & Riechelmann, D. (2020). Experimental investigation of ammoยญnia combustion in a bench scale 1.2 MW-thermal pulverised coal firing furnace. Applied Enยญergy, 277, 115580. https://doi.org/10.1016/J.APENERGY.2020.115580ย 

Wang, R., Chang, S., Cui, X., Li, J., Ma, L., Kumar, A., Nie, Y., & Cai, W. (2021). Retrofitting coal-fired power plants with biomass co-firing and carbon capture and storage for net zero carbon emission: A plant-by-plant assessment framework. GCB Bioenergy, 13(1), 143โ€“160. https://doi.org/10.1111/gcbb.12756ย ย 

Zhang, C., Zhai, H., Cao, L., Li, X., Cheng, F., Peng, L., Tong, K., Meng, J., Yang, L., & Wang, X. (2022). iScience Understanding the complexity of existing fossil fuel power plant decarbonยญization. ISCIENCE, 25, 104758. https://doi.org/10.1016/j.isciย