fbpx

Neli Kalcheva – Technical University of Varna, Bulgaria, 9010 Varna, str. Studentska 1

Maya Todorova – Technical University of Varna, Bulgaria, 9010 Varna, str. Studentska 1

Ginka Marinova – Technical University of Varna, Bulgaria, 9010 Varna, str. Studentska 1

DOI: https://doi.org/10.31410/ERAZ.2020.153

6th International Conference – ERAZ 2020 – KNOWLEDGE BASED SUSTAINABLE DEVELOPMENT,  Online/virtual, May 21, 2020, CONFERENCE PROCEEDINGS

Published by: Association of Economists and Managers of the Balkans – Belgrade, Serbia

Conference partners: Faculty of Economics and Business, Mediterranean University, Montenegro; University of National and World Economy – Sofia, Bulgaria; Faculty of Commercial and Business Studies – Celje, Slovenia; Faculty of Applied Management, Economics and Finance – Belgrade, Serbia

ISSN 2683-5568, ISBN 978-86-80194-33-2, DOI: https://doi.org/10.31410/ERAZ.2020

 

Abstract

The purpose of the publication is to analyse popular classification algorithms in machine
learning. The following classifiers were studied: Naive Bayes Classifier, Decision Tree and AdaBoost
Ensemble Algorithm. Their advantages and disadvantages are discussed. Research shows that there is
no comprehensive universal method or algorithm for classification in machine learning. Each method
or algorithm works well depending on the specifics of the task and the data used.

Key words

Classification, Machine learning, Naive Bayes classifier, Decision tree, Ada Boost Ensemble
algorithm..

References

Gareth, J., D. Witten, T. Hastie, R. Tibshirani, An Introduction to Statistical Learning with Applications
in R, ISBN 978-1-4614-7138-7, pp.1-pp.440, 2015
Harrington, P. Machine Learning in Action. Greenwich, CT, USA: Manning, 2012.
Hotho, A., A. Nürnberger, G. Paab. A brief survey of text mining. LDV Forum-GLDV J. Comput.
Linguistics Lang. Technol., vol. 20, no. 1, 2005, pp. 19-62.
Jaakkola, T. MIT CSAIL, The AdaBoost algorithm, people.csail.mit.edu/dsontag/courses/ml12/
slides/lecture13.pdf
Khan, A., B. Baharudin, L. Lee, K. Khan. A review of machine learning algorithms for text-documents
classification. Journal of Advances Information Technology, vol. 1, 2010, рр. 4-20.
Manning, C., P. Raghavan, H. Schütze. Introduction to Information Retrieval. Cambridge University
Press, 2008.
Raghunath, D., C. Usha, K. Veera, V. Manoj. Predicting heart disease using machine learning
techniques. International Research Journal of Computer Science VI, no.4, 2019, pp. 149-153.
Rokach, L., O. Maimon, Decision Trees, Data Mining and Knowledge Discovery Handbook,
ISBN978-0-387-25465-4, 2005
Batura, T. Metody avtomaticheskoj klassifikacii tekstov. Programmnye produkty i sistemy 30, no.
1, 2017.
Voronov, A. Obzor algoritmov mashinnogo obuchenija, Kurs lekcij K.V. Voroncova po mashinnomu
obuchenij (2007-2008), https://www.compression.ru/video/seminar/slides/2009_MachineLearning.
pdf.
Uitkin, L. Machine Learning Kompozicionnye metody mashinnogo obuchenija https://tema.spbstu.
ru/machine_learning/

 

ERAZ.2020.153

DOWNLOAD